ANAT: News #35
Scientific Serendipity


CRITICAL WRITING

As part of ANAT's scientific serendipity focus the critical discourse section of the ANAT newsletter has taken on a scientific flavour. Building on the research into consciousness undertaken in the last newsletter, ANAT are proud to publish the work of renowned consciousness philosopher, David J. Chalmers. Chalmers studied mathematics at Adelaide University and as a Rhodes Scholar at the University of Oxford, but a fascination with consciousness led him into philosophy and cognitive science. As of January 1999, he will be Associate Director of the Center for Consciousness Studies at the University of Arizona. His book The Conscious Mind, which elaborates many of the ideas in this article, is published by Oxford University Press.

The first section of it appears here, and it will be concluded in the next ANAT newsletter. (Part 2)
This article was first published in Scientific American.

 

The Puzzle of Conscious
Experience (Pt 1)
by David J. Chalmers

http://ling.ucsc.edu/~chalmers/

Conscious experience is at once the most familiar thing in the world and the most mysterious. There is nothing we know about more directly than consciousness, but it is extraordinarily hard to reconcile it with everything else we know. Why does it exist? What does it do? How could it possibly arise from neural processes in the brain? These questions are among the most intriguing in all of science.

From an objective viewpoint, the brain is relatively comprehensible. When you look at this page, there is a whir of processing: photons strike your retina, electrical signals are passed up your optic nerve and between different areas of your brain, and eventually you might respond with a smile, a perplexed frown or a remark. But there is also a subjective aspect. When you look at the page, you are conscious of it, directly experiencing the images and words as part of your private, mental life. You have vivid impressions of colored flowers and vibrant sky. At the same time, you may be feeling some emotions and forming some thoughts. Together such experiences make up consciousness: the subjective, inner life of the mind.

For many years, consciousness was shunned by researchers studying the brain and the mind. The prevailing view was that science, which depends on objectivity, could not accommodate something as subjective as consciousness. The behaviourist movement in psychology, dominant earlier in this century concentrated on external behaviour and disallowed any talk of internal mental processes. Later, the rise of cognitive science focused attention on processes inside the head. Still, consciousness remained off-limits, fit only for late-night discussion over drinks.

Over the past several years, however, an increasing number of neuroscientists, psychologists and philosophers have been rejecting the idea that consciousness cannot be studied and are attempting to delve into its secrets. As might be expected of a field so new, there is a tangle of diverse and conflicting theories, often using basic concepts in incompatible ways. To help unsnarl the tangle, philosophical reasoning is vital.

The myriad views within the field range from reductionist theories, according to which consciousness can be explained by the standard methods of neuroscience and psychology, to the position of the so-called mysterians, who say we will never understand consciousness at all. I believe that on close analysis both of these views can be seen to be mistaken and that the truth lies somewhere in the middle. Against reductionism I will argue that the tools of neuroscience cannot provide a full account of conscious experience, although they have much to offer. Against mysterianism I will hold that consciousness might be explained by a new kind of theory. The full details of such a theory are still out of reach, but careful reasoning and some educated inferences can reveal something of its general nature. For example, it will probably involve new fundamental laws, and the concept of information may play a central role. These faint glimmerings suggest that a theory of consciousness may have startling consequences for our view of the universe and of ourselves.

The Hard Problem

Researchers use the word "consciousness" in many different ways. To clarify the issues, we first have to separate the problems that are often clustered together under the name. For this purpose, I find it useful to distinguish between the "easy problems" and the "hard problem" of consciousness. The easy problems are by no means trivial - they are actually as challenging as most in psychology and biology - but it is with the hard problem that the central mystery lies.

The easy problems of consciousness include the following: How can a human subject discriminate sensory stimuli and react to them appropriately? How does the brain integrate information from many different sources and use this information to control behaviour? How is it that subjects can verbalise their internal states? Although all these questions are associated with consciousness, they all concern the objective mechanisms of the cognitive system. Consequently, we have every reason to expect that continued work in cognitive psychology and neuroscience will answer them.

The hard problem, in contrast, is the question of how physical processes in the brain give rise to subjective experience. This puzzle involves the inner aspect of thought and perception: the way things feel for the subject. When we see, for example, we experience visual sensations, such as that of vivid blue. Or think of the ineffable sound of a distant oboe, the agony of an intense pain, the sparkle of happiness or the meditative quality of a moment lost in thought. All are part of what I am calling consciousness. It is these phenomena that pose the real mystery of the mind.

To illustrate the distinction, consider a thought experiment devised by the Australian philosopher Frank Jackson. Suppose that Mary, a neuroscientist in the 23rd century, is the world's leading expert on the brain processes responsible for colour vision. But Mary has lived her whole life in a black-and-white room and has never seen any other colours. She knows everything there is to know about physical processes in the brain - its biology, structure and function. This understanding enables her to grasp everything there is to know about the easy problems: how the brain discriminates stimuli, integrates information and produces verbal reports. From her knowledge of colour vision, she knows the way colour names correspond with wavelengths on the light spectrum. But there is still something crucial about colour vision that Mary does not know: what it is like to experience a colour such as red. It follows that there are facts about conscious experience that cannot be deduced from physical facts about the functioning of the brain.

Indeed, nobody knows why these physical processes are accompanied by conscious experience at all. Why is it that when our brains process light of a certain wavelength, we have an experience of deep purple? Why do we have any experience at all? Could not an unconscious automaton have performed the same tasks just as well? These are questions that we would like a theory of consciousness to answer.

I am not denying that consciousness arises from the brain. We know, for example, that the subjective experience of vision is closely linked to processes in the visual cortex. It is the link itself that perplexes, however. Remarkably, subjective experience seems to emerge from a physical process. But we have no idea how or why this is.

Is Neuroscience Enough?

Given the flurry of recent work on Consciousness in neuroscience and psychology, one might think this mystery is starting to be cleared up. On closer examination, however, it turns out that almost all the current work addresses only the easy problems of consciousness. The confidence of the reductionist view comes from the progress on the easy problems, but none of this makes any difference where the hard problem is concerned.

Consider the hypothesis put forward by neurobiologists Francis Crick of the Salk Institute for Biological Studies in San Diego and Christof Koch of the California Institute of Technology. They suggest that consciousness may arise from certain oscillations in the cerebral cortex, which become synchronized as neurons fire 40 times per second. Crick and Koch believe the phenomenon might explain how different attributes of a single perceived object (its colour and shape, for example), which are processed in different parts of the brain, are merged into a coherent whole. In this theory, two pieces of information become bound together precisely when they are represented by synchronized neural firings.

The hypothesis could conceivably elucidate one of the easy problems about how information is integrated in the brain. But why should synchronized oscillations give rise to a visual experience, no matter how much integration is taking place? This question involves the hard problem, about which the theory has nothing to offer. Indeed, Crick and Koch are agnostic about whether the hard problem can be solved by science at all.

The same kind of critique could be applied to almost all the recent work on consciousness. In his 1991 book Consciousness Explained, philosopher Daniel C. Dennett laid out a sophisticated theory of how numerous independent processes in the brain combine to produce a coherent response to a perceived event. The theory might do much to explain how we produce verbal reports on our internal states, but it tells us very little about why there should be a subjective experience behind these reports. Like other reductionist theories, Dennett's is a theory of the easy problems.

The critical common trait among these easy problems is that they all concern how a cognitive or behavioural function is performed. All are ultimately questions about how the brain carries out some task-how it discriminates stimuli, integrates information, produces reports and so on. Once neurobiology specifies appropriate neural mechanisms, showing how the functions are performed, the easy problems are solved. The hard problem of consciousness, in contrast, goes beyond problems about how functions are performed. Even if every behavioural and cognitive function related to consciousness were explained, there would still remain a further mystery: Why is the performance of these functions accompanied by conscious experience? It is this additional conundrum that makes the hard problem hard.

The Explanatory Gap

Some have suggested that to solve the hard problem, we need to bring in new tools of physical explanation: nonlinear dynamics, say, or new discoveries in neuroscience, or quantum mechanics. But these ideas suffer from exactly the same difficulty. Consider a proposal from Stuart R. Hameroff of the University of Arizona and Roger Penrose of the University of Oxford. They hold that consciousness arises from quantum-physical processes taking place in microtubules, which are protein structures inside neurons. It is possible (if not likely) that such a hypothesis will lead to an explanation of how the brain makes decisions or even how it proves mathematical theorems, as Hameroff and Penrose suggest. But even if it does, the theory is silent about how these processes might give rise to conscious experience. Indeed, the same problem arises with any theory of consciousness based only on physical processing.
The trouble is that physical theories are best suited to explaining why systems have a certain physical structure and how they perform various functions. Most problems in science have this form; to explain life, for example, we need to describe how a physical system can reproduce, adapt and metabolise. But consciousness is a different sort of problem entirely, as it goes beyond the explanation of structure and function.
Of course, neuroscience is not irrelevant to the study of consciousness. For one, it may be able to reveal the nature of the neural correlate of consciousness - the brain processes most directly associated with conscious experience. It may even give a detailed correspondence between specific processes in the brain and related components of experience. But until we know why these processes give rise to conscious experience at all, we will not have crossed what philosopher Joseph Levine has called the explanatory gap between physical processes and consciousness. Making that leap will demand a new kind of theory.

Part 1 of a 2 part text.
To be continued in the next newsletter